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RATIONAL AMV30RY COMMITTEE FOR AERONAUTICS

. AERODYNAMIC CHARAC!I!ERl13TICSOF NACA RM-10 MISSILE

~ IIV8- BY 6-FOOT SUPERSONIC WIND TUN19ELAT MACH

E NUM8ER3 FROM 1.49 TO 1.98

HI - ANALYSLS OF FORCE DISTRIBUTION AT ANGLE
.

OF ATTACK (STAB~IZllU2FINS Rl?MOVEO)

By Roger W. Luidens and Paul C. Stion

. SUMMARY

An analysis of the foroe distribution on a slender pointed
body of revolution at angle of attack was made utilizing pressure-
distribution data and balanoe measurements. The data were obtained
in the NACA Lewis 8- by 6-foot supersonic tunnel at Mach numbers of
1.49, 1.59, 1.78, and 1.98 and for a range of angles of attaok fiam
00 to 90. The Reynolds number based on the model length was approxi-
mately 30,000,000. The paraholio body investigatedwas the haU?-
soale model of the NACA supersonic flight-researoh’missile designated
RM-10 (w,ithstabilizing fins removed). A second model oonsisti~ of
a cone-oy2i&er combination was investigated to isolate the effect of
profile curvature.

The 3nability to prediot the normal force distribution due to
angle of attack on slender bdiies of revolution by the existing
l?.ne~ized potential theory was due in part to inaccurate ??rediotion
by the theory of the ~essure distribution due to angle of attack on
bodies with curved profiles, and in part to neglecting the effeots
of oross-flow separation by the theory. A concept of the linearize@
potential theory (in which the radius of the body is assumed to
approach zero) is presented, which approximately eliminates the
shortccxningsof the theory with regard to the curved profiles.

The axial fi?iotionand fore pressure force renuiinedessentially
constant with angle of attack. The increase in total axial force
with angle of attack was prharily @e to an increase in base pres-
sure force.

,
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INTRODUCTIOII

Many methods sre’available for predicting the aerodynamic
foroes acting on slender bodies of revolution (at angle of at~ok)
moving at supersonic speeds. Two representativemethals for pre- “
d.ictingthe norml forces on slender bodies of revolution inolined
to a supersonic stream are linearized potential.theory,which seri-
ously underestimatesthe measured values, and the meth.gdof’ref-
erence 1, which greatly improves the estimation by modifying “the
potential,theoryin an attempt to account for viscous effects. ‘NM
assumption of constant separationmade In-reference 1, however, is
inconsistentwith .thepressure distributions observed on the RM-10
model (reference2). In addition, deviations of experimental pres-.
sure distribution frcm potential theory exi’stover many regions of
the bdy Wt appreciably Influencedby viscous effects.

,.
An investigationwas therefore oonducted to determine the theo-

retical ati experimental distributions of the normal and axial forces
and to study the origin of the discrepancies that occur between
theory and expbrlment. Use was made of the RM-Nl data presented in
references 2 and 3 and the pressure-distributiondata obtained with
a second model. The investigationcovers a range of lkch nunibbrs
from 1.49 to2.00, angleg of attaok from 0° to 9°, and a test

Reynolds number of approx-tely 30,0004000 based on the letith of

.,-

.

the RM-10 model.

APPARATUS

Data from the RM-10 (fig.
and 3 are presented herein. A
length of 55 inches, a maximum

,-” —

.

AND PROCEOURE

l(a)) invef3t&tion of references 2
second model (fig. l(b)) having a
diameter of 2.5 inches, and a fine-

ness ratio 2/D of-21.9 has also been investigated. ‘The body oon-
sisted of a U?” vertex angle cone (nose was blunted by removing
1/8 inoh frcm the tip) extendtng 3.20 diameters, and a cyllndrioal
section 15.4 body diameters long ~oined by a curved section faired
between the cone and the cylinder,. Static-pressure orifices were
located in a longitudinalrow on the model surface at every inch
from station Z inches to 17 inohes and every 2 inches from sta-
tion 17 inohes to 49 Inches. The sup.mrt system described in ref-
erence 2 was used for the cone-cylindermodel.

Experhmmtal pressure data were obtained for nominal free-
stream Maoh numbers of 1.5, 1.6, 1.8, and 290, for tiifice radial
positions of e = 0° and 180°, ati for angles of attack of 0° a~ “ —

8°. The Reynolds number based on the mod~l”le@h was aPProxf- ,
.— --

nmtely 23,000,000.

.
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SYMBOIS

The following synbols are used.in this report:

‘coefficient

P-PO
pressure coeffioieti,—

’30
.

a constant
,.

c
. .

section drag coefficient
length in terms of its

of a circular
diameter

cylinder per unit

“D . maximum body diameter

local friction force
.

f

“k a constant

Mch numberM

static pressure.

@ .

Reynolds number,

maximum cross-sectfonalarea

mcdel base area

model phi-f orm amia”

velocity

radial velocity component (cylindrical mordipates)
. .

axial velocity component‘x

tangential vebclty component (cylindrical coordbtes)ve .

x,b coord.lnatesof mdel

*
x.r.e “ cylindrical coordinates (8 = o in plane of angle of attack. .

- ami to windward)
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.
a angle of attack

$ cotangent of l&ch.angle,

Y ratio of specific heats,

A conditions for model due

>8 bou@ary-layer thldcness

K/M2-l

1.40

to angle of attack

8* boundary-layerdisplacement thickness

7 ratio of drag coefficient for cirmlar cylinder of finite
length to that for cylinder of infinite length

w Viscosity

P density

Subscripts:

o free-stream conditions

2 conditions for model due

A axfal force (positive to

a station axial force

b base of model

f due to friction

to angle of attack

rearward)

.

.

-.

L leeward side or surface of model

2 length of malel

Iv normai force (positiveto leeward)

n station normal force
,.__

. P pressure

w windward side or surface of model

-~ .

.

.
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METHOD OF COMPUTATION AND REDUCTION OF DATA

The experimental pressure dlstrflnrtlonand the force measure-
ments for the RM-10 mcxiel,which are presented in references 2 and
3, were reduced to normal and axial force co@ficients. The incre-
mental normal and axial pressure force coefficients (due to angle
of attack) were obtained by graphically integrating the experimental
incremental pressure coefficients CP,2. Fwce coefficients are

presented in terms of the model maxtium cross-sectional area S with
the exception of the station force coefficients,which are %ased on
the imiividual station diameters.

Axial force data as a function of Mach number for angles of
attack of 4° and 9° were obtained from cross plots %ecause the
experimental values recorded fw the pressure model and the balance
model were obtained at slightly different angl.ssof attack.

The theoretical incremental pressure coefficient associated
with angle of attack for the linearized potential theory was given
in references 2 and 3 as

CP,2 = 4a cos O * + a2(l -4 sin2 6) (1)

Appropriate integrations (reference 3) of equations (1) over the—
and axial force coefficients:

~2

Z-
(2)

&
3

(3)

(4)

(5)

(6)

.

.

~-zfut---- -
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The normal force ooeffiolentwas also computed
in reference 1:

.
,. CN=a+)+.q.d,c+i). .

Based on the’conditions of this
of reference 1, the value”of TI

1.2. .

The aerodynamic
fluid consist of the

NACA RME50119

by the formula given “

(7)

investigationand the criterions
was taken as 0.71 and cd,c as

R3WJLT3 AND DECUSSION

foroes acting on a body movin& in a viscous
pressure forces associated with the acceler-

ation of the fluid about the body and the shear forces resultlng
frcm thevisooue attachment of the fluid to the body. For con-
‘flguratioriswith axial symmetry, these foroes a the b~y =e con-
veniently analyzed in terms of components directed normal and par-
allel to the body’axis. ..

Normal Forces .

A comparison of the measured total normal force coefficient
and the values obtained by integration of ‘theexperimental pressure
distribution mefficlent with angle of attack for a range of Mach
nuibers is presented in figure 2. The differerioebetween the total
normal foroe ti the normal ~essure force is the contribution o?
the friction, which is shown to be negligible. The conclwion t~t
the normal pressure force represents the total,normal force acting
on the btiy is substantiated in & ‘bythe data.frcm two-
dlnmsional cyMnders “normal to a subsonic str~, which show tht
the measured total drag foroe agrees closely with the drag foroe
calculated from the pressure distribution (for example, reference 4).
Additional verification M presented in appendti A by an analytical
analysis of the shear forces. The results of the analysis are
included in figure 2 as zone A, which also evidences that the fric-
tion normal force is very small withfn the angle of attack range
where the measured normal foroe Is appreciable. (A small friotion “ .
force does not preclude an effect of viscosity on the pressure dis-
tribution; In fact this effept may be appreciable; as fndic!atedin
reference 1.)

.

.

—
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.

.—

.

--
.—

.

.

.



.
Compared with

force coefficients

the potential flow

the experkntally obsemed variation of normal
CN with angle of attack a in figure 2 are

theory (equation (!5))and a modification of this
theory given in appendix A, which accounts for the boumhry-layer
displacement thiclmess obseryed at zero angle of attmk. The

F incraase in the norms’}force coefficient due to the boundary-layer
Ew displacement thic~ess is represented by zone B. Both theories

yield a l@sar variatfon of CN with a’ and do not approximate

the experimental results, which Me considerably above these theo-
ries and show an increasing normal force curve slope with increasing
angle of at@ck.

The methd of reference 1 (equation (7)), which assumes a Vls-
cous separation of the cross-flow along the length of the model,
shows very close agreement with the data. The significance of this
agreement, however, remains”to be determined. IVoneof the theories
predict the increased normal force observed with increasing free- .
stream Mach number..

In order to facilitate funther analysis of the normal pressure
force distribution on the body, the experimental station nor@ forces

●

were sepsrated into windward and leeward coefficients (ACn,w and

ACnjL, the sum of which is the total station coefficient). The vari-

. ation of these coefficientswith angle of attack for six represen-
tative longitudiml model stations is presented In figure 3. For
comparison, the local notil force coefficients calculated by poten-
tial.thpory (equations (2) and (3)) tie also presented.

The potential theory best predicts the statfon normal force
coefficient for both windward and leeward sides at the forward sta-
tions● At the mid and aft stations the leeward normal force coef-
ficients tie greater than predicted by potential theory. This
effect may not be arbitrarily charged to separation of the cross
flow, as might be implied from the agreement shown in figure 2
between the method of reference 1 ati the total force. The norm%l
force coefficient, observed at the mid-section of the windward
side of the body, which is not subject to separation, is also
greater than that predicted by theory. The pronounced deviation
of the experimental results from the theory on the ‘aft-leeside of
the body (stations 58 and 70) is primarily associated with cross-
flow separation. The agreement on the windward side in this region,
however, is not adversely effected by the separation on the lee
side. Thus. the possible argument that the cross-flow separation
.ofthe leew&rd s~face fore =nd mid-sections
appreciably affect the normal force over the
of the w~ward surface is ruled out.

Ml,

of the model may
fore and mid-sections

,

—
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The excess lift, above that predioted by the theory, observed
over both the lee and windwsrd sides of the baly mid-section results
flmu an antisymwtrioal-tne pressure distribution that contributes
appreciably to the total body lift. The excess of lift observed
ahead of station 45 inches is slightly less on the leeward than on z

the winiward side, ard It is noted that the effect of boumdary-layer .
“+J

acoretion (without the fommtion of mrtioity) on the forward-lee
side of the body (referenoe2) is to decrease the lift on the lee
side of the body. An insight into a possible origin of the pressure
distribution that gfves rise to the excess of lift observed over the
mid-sections of the body may be found in the equation for the pres-
sure distribution due to angle of attack (equation (1)), which con- —

tains a term that is antisymaetrioalabout the body (4G cos 8 ~)

and results from the doublet distribution assumed on the body axis.
The antisymmetrioalterm alone yields the normal force at a station.
Thus it 1s logioal to presume that the increased normal force, over
that predicted by equation (l), observed on both the windward ati
leeward sides of the bcdymid-seotion arises for the most part fia .

.

a shortcoming of the potential theory. The inability of the existing
pdtential theory to predict the normal force coefficient therefore
arises fl?om(1) the failure of the existing theory to accurately
predict the potential flow pressure distribution ati (2) the neglect

.

of viscous effects which result in cross-flow separation over sores
regions of the body.

.

In an attempt to determine how the discrepanciesbetween the
experimental results and the potential theory which are not charge-
able to viscous effects are affected by model oontour, a pressure-
distribution investigationwas conduoted ona seoond model (fig. l(b))
omposed of a cone gradually faired into a cylinder. The incremental
longitudinalpressure coefficient distribution for the windward side,
e = 0° ati the leeward sfde, e = 180° (the radial positions most
significant with respeot to the pressure influence on the normal
force) are presented in figure 4 for a = 8° at approximately the
same Mach nmnbers as the R4-10 data. .

The experimentally observed results show the best agreement
with the potential theory on the windward side of the body for the
regions where the body profile has constant slope (that is, the
conioal and cylindrical sections). On the lee side, close agreement
was obtained over the cone but not over the cylinder, presumably
because of cross-flow separation. Over the curved section of the
model, the experhental pressures at all Mach numbers are greater
on the windward and less on the leeward side of the model than those
predicted by linearized theory. The same type of deviation from

.

--
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theory was observed in the R4-10 data reproduced in figure 5. R!?o-
file curvature therefore has an effect on the pressure distribution
that is not wholly accounted for by linearized potential theory.

P* Appendix B presents a discussion of an assumption in the theory that
2 results in this type of discrepancy ati suggests a concept (which is

not rigorous) that approximately corrects the shortcoming.

Axial Force

The axial force is the sum of the fore pressure force, the
base pressure force, and the friction force. The distribution of
the incremental station axial fore pressure force coefficient (due
to angle of attack) A~a p for several representative stations is

shown In figure 6 as a &nction of angle “ofattack. Except for
stations 6 ati 18, the potential theory (equation (4)) accurately
predicts the station axial fore pressure force on the body despite
the p?esence of cross-flow separation and some shortcomings of the
existing linearized potential theory, which have an adverse effect
on the prediction of normal force.

. The increment of axial fore pressure force coefficient ACA,P

for the Mach numbers investigated is presented in figure 7 as a
function of angle of attack. Also presented is the potential theory

. prediction of the axial force (equation (6)), which yields a t~ust
force proportional to the square of the angle of attack. The
experimentally observed increment of axial fore pressure force coef-
ficient is in general in the thrust direction, but is of much
smaller magnitude than that predicted by theory. !l?hehigh experi-
mental axial fore pressure force as well as the experimental
increase with increasing free-stream Mach number is associated with
the flow about the forward portion of the body (fig.-6). It is
emphasized that the maximum change in the incremental axial fore
pressure force coefficient shown in figure 7 represents a variation
of 4 percent or less in the total axial force. This magnitude is
evident in figure 8, which shows the total axial force coefficient
CA and its ccsnponentparts. Relative to the total axial force

coefficient, the axial fore pressure force coefficient cA,p
decreases only sMghtlywith angle of attack ad is very nearly

. equal to the value predicted by linearized theory for u = 0 (refe-
rence 3). Most of the increase in total’axial force with angle of
attack is accounted for by the increase in base force shown in
figure 8(c).
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The axial frtotion force was calculated by subtracting the
.

axial fore and base pressure forces from the total axial force.
Figure 8(d) shows that within the accuracy of the experiment the
ax~l friction force coefficient CA,f r~i~ relative~ con-

stant with angle of attack, a result not readily anticipated in
Mght of the pronounced c~cumferential variation in the boundary y
layer with angle of attack reported in reference 2.

An analysis of the
nose bcdy of revolution
made Era data obtainsd

SUMMARY OF RIMJLTS

force distribution over a slemier pointed
at &?@es of attack between 0° and 9° was
inan investigationconducted in the NICA

Lewki 8- by 6-foot supersonicwini tu&el at free-stream hkch num-
bers of 1.49, 1.59, 1.78, and 1.98 at a Reynolds number of approxi-
mately 30,000,000. The following results were obtained:

1. The contribution of the skin friction to the total normal
force observed on the body at angle of attack was negligible, ad
the normal pressure force represents the total force acting normal
to the body axis.

2. The existing linearized potential theory underestimates
the normal force on the RM-10 for two reasons: (1) The theory does
not accurately predict the potential flow pressure Distribution due
to angle of attack on bodies of revolution having curved profiles.
(2) Separation of the cross flow exists over some regions of the
b(Xly.

3. The axial friction force W axial fore pressure force
remained essentially,constantwith angle of attack.

4. The increase in total axial force with angle of attack was
primarily due to an increase in base

Lewis Flight Propulsion Laboratory,
National Advisory Committee fcw

Clevelanl, Ohio.

pressure force.

Aero-utics,

.

.

—
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LPPENDIX A

BODY NORMAL FORCES A8 KTFECTED BY

FLUID Vlscosri!y

Viscous forces in a fluid may affect the normal force on a
body of revolution inclined to a supersonic stream in several
ways: (1) by shear forces acting on the body; (2) by changes in
pressure on the body as a result of boundary-layer displacement
thiclmess; and (3) by changes in pressure on the bcdy due to flow
separation. h this appendix the magnitude of
effects is examined.

Fluid shear effect. - The contribution of
force to the normal force depends on the local
fi.cientand local inclination of the flow with
axis. The local friction force is

df = C@ob d6 dx

the f-tisttwo

the fluid shear
skin-friction coef-
respect to the bcdy

(8)

The local inclination of the stream given in reference 2 is repre-
sented by

Vfjj
—.2asin8
u~

(9)

and

The station normal force may then be expressed as

3(

+ (J
= Zqob 2a ~~:fco~t9d~ (10)Cf sin2 # de - —

o

Assuming that Cf may be replaced by the constant mean value of

0.0021 (based on wetted erea) foti experimentally to exist at
~. 1.98 ad a=O, the station normal farce coefficient per

radian due to friction becomes
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%,f Y
a ‘Z@E = Cfx = 0*~066 (n)

Integratingthe station normal force over the length of the body
yields, for the normal force coefficientdue to friotion on the
RM-10, CN,f/~= 0.0764 (based on maximum cross-sectioralarea)

COD.lpFll?Odwith CN/a = 0.734 frcsnpotential theory, or approxl-

Mtely 10 percent of the potential theory and 3 percent of the
measured total normal force coefficientat a . 8.61°, where the
measured value is appreciable (fig. 2). It was found exper*n-
tally that the axial friction foroe remains constant with angle
of attack, although the distribution of local friction undoubtedly
ohanges. Such changes in local friction about the bdy affect the
normal friction force through the first tem in equation (10), but
not appreciably. It may therefore be concluded that for the IWG1O
the friction normal force is small.

Boundary-layer displacement thiokness effect. - The equation
for the’normal force coefficient is

.

U’
1 2fi

CN=* CP,2 Cos IYb M&K
o

(12)
●

✎

Utilizing linearized potential theory and includingthe boundary-
layer displacement thidcness in the manner of reference 6, the
equation for the pressure coefficientdue to angle of attack
(equation (1)) beoomes

() d&6
CP,2-= 4acos 13 *+z + a?(l - 4 Sinz e) (13)

This method assmes the boundary layer remains symmetricallydis-
posed about the lmdy at angle of attack. For turbulent boundary
layer of the fan consistentwith the profile observed on the RM-10,
re?erenoe 2 gives for the bo~y-layer

-l/s6.-

and

thidcness ‘

(14)
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Substituting in equation (13) and integrating in accordance with
equation (12) over the RM-10 where 5 . 1.0 inch, as observed in

& the plane of the base at M. = 1.98, k = 0.423 afi ~ . 0-235
ml
a (reference 7), the normal force coefficient per radia~ due to the

boun@ry-layer displacement thiclmess is CH ~*/u = 0.216 as oom-

pared with the potential value of CN/U= 0.%54. The contribution

of the boundary layer to the normal force amou@s to approximately
30 percent of the potential theory ad 9 percent of the measured
total normal foroe coefficient at a = 8.61°.

The assumption that the boundsry kYer remains s~etrically
disposed about the body at angle of attack is inconsistentwith
the experimental.lyobserved results of reference 2, which showed
a marked shift of the boundary layer from the windward to the lee-
ward side of the’model. The present calculation, houever, is
useful to show an order of magnitude of the effeot.

I

13
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APPENDIX B

EFFECT OF BODY PROFILE CWATUKE OI?POTEHI!IAL

ELOW PRISSURE D3i3TRIBUTIOlYIYUETO

AIGCE OF ATTACK

Part of the discrepancy between the expertientally observed
and theoreticallypredicted pressures on the bcdies investigated
has been determined to be associated with the curvature of the
profiles. It is now desirable to review the existing theory to
detenmine what approximations in the theory may have led to this
shortccmimg and how the theory may be modified to account for this
effeot. A comparison of the theoretical results, developed in ref-
erences 2 and 5, for determining the flow about a body inclined to
a supersonic stream reveals that the assumption of either subsonic
or supersonic flow yields the same solutions. Beoause the develop-
ment of the subsonic equations (reference 5) presents an easier
physioal picture of the quantities involved, this concept will be
used.

The equation fo@ the perturbation velooity due to angle of
attaok Is (referenoe2)

VX,2
u~

-2a cos

P“.xlX2

7

+“ ‘% :-
\ 180°
\ -“” b

Fore Mach line on
body surface

~%
6

xl - X2 s fi~bl ~o

●

.r

90°

--L
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.
The implication in the subsonic case is that the ccmponent of flow
normal to the body axis at any point on the bdy surface xl of

the preceding sketch is itiluenced by the body slope in the plane

.- perpendicular to the bdy axis at xl. In the supersonic case,
* however, point (xl,bl,e = -
E 0] is influenced only by that portion

of the body along and ahead of the fore Mach cone of the point
under consideration. Because for the subsonic case the effect of
angle of attack according to the theory arises only from the local
body slope in a plane normal to the axis through the point of
interest, it is presumed that in the su~ersonic case the effect of
angle of attack arises only along the fore Mach line from the point
tier consideration. For bodies developed frm profiles with cur-
vature the fore Mach line traverses regions of varying slope
(db~ti~ between xl afi ~. The influence of the slope at vari-

ous positions on the fore Mach line has not been detemained; however,

the use of an average value such as the slope at xl - ~ pbl was

used in this analysis. Other theoretical or physical averages could
possibly be employed to advantage. It is of interest that such a
concept does not I&luenoe the existing solutions in a cylinder or
oone. The theoretical results yielded by this concept (which is
not rigorous) are cqed with the experimentally observed results
in.figures 9 to 11 and show an intprovedagreement with experhental
results except where cross-flow separation is &own to exist.

The distribution of incremental pressure coefficient as ca-
lculatedby the stepwise doublet distribution method of reference 8,

2 ?Px~2> is presented in figure 9 for theafidefining C 2.a-
P, u.

RM-10 model when 9 = 0° a% 180°, ~ = 1.98, and a= 8.61°.

This solution shows that in general the prediction of the magnitude
ad trends of the pressures is improved. The normal force coef-
ficient ob=ined by the integration of this pressure distribution
is presented in figure 11 ani shows only a small improvement over
the normal force detemined hy equation (5).
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